A Statistical Analysis of Particle Swarm Optimization With and Without Digital Pheromones

نویسندگان

  • Vijay Kalivarapu
  • Eliot Winer
چکیده

Particle Swarm Optimization (PSO) is a population based heuristic search method for finding global optimal values in multi-disciplinary design optimization problems. PSO is based on simple social behavior exhibited by birds and insects. Due to its simplicity in implementation, PSO has been increasingly gaining popularity in the optimization community. Previous work by the authors demonstrated superior design space search capabilities of particle swarm through implementing digital pheromones in a regular PSO. Although preliminary results showed substantial performance gains, a quantitative assessment has not yet been made to prove the claim. Through a formal statistical hypothesis testing, this paper attempts to evaluate the performance characteristics of PSO with digital pheromones. Specifically, the authors’ claim that the use of digital pheromones improves the solution quality and solution times are tested using various multi-dimensional unconstrained optimization test problems. Conclusions are drawn based on the results from statistical analysis of these test problems and presented in the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of Digital Pheromones for Use in Particle Swarm Optimization

This paper presents a new approach to particle swarm optimization (PSO) using digital pheremones to coordinate the movements of the swarm within an n-dimensional design space. In traditional PSO, an initial randomly generated population swarm propagates towards the global optimum over a series of iterations. Each particle in the swarm explores the design space based on the information provided ...

متن کامل

Improving Solution Characteristics of Particle Swarm Optimization using Digital Pheromones

In this paper, a new approach to Particle Swarm Optimization (PSO) using digital pheromones to coordinate swarms within an n-dimensional design space is presented. In a basic PSO, an initial randomly generated population swarm propagates towards the global optimum over a series of iterations. The direction of the swarm movement in the design space is based on an individual particle’s best posit...

متن کامل

Implementation of Digital Pheromones in Particle Swarm Optimization for Constrained Optimization Problems

This paper presents a model for digital pheromone implementation of Particle Swarm Optimization (PSO) to solve constrained optimization problems. Digital pheromones are models simulating real pheromones produced by insects for communication to indicate a source of food or a nesting location. When integrated within PSO, this principle of communication and organization between swarm members offer...

متن کامل

Grid Scheduling using Improved Particle Swarm Optimization with Digital Pheromones

Scheduling is one of the core steps to efficiently exploit the capabilities of emergent computational systems such as grid computing. Grid environment is a dynamic, heterogenous and unpredictable computing system which shares different services among various users. Because of heterogenous and dynamic nature of the grid, the methods used in traditional systems could not be applied to grid schedu...

متن کامل

Particle swarm optimization for a bi-objective web-based convergent product networks

Here, a collection of base functions and sub-functions configure the nodes of a web-based (digital)network representing functionalities. Each arc in the network is to be assigned as the link between two nodes. The aim is to find an optimal tree of functionalities in the network adding value to the product in the web environment. First, a purification process is performed in the product network ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007